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Assignment 4

1. Show that for every f ∈ C[0, π] satisfying f(0) = f(π) = 0 and f ′(x) exists for all x ∈ [0, π]
and f ′ ∈ R[0, π], the inequality ∫ π

0
|f |2 ≤

∫ π

0
|f ′|2

holds. Can you characterize the case of equality in this inequality?

2. Consider the class of curves{
γ ∈ C1[0, 1] : γ(0) = (0, 0), γ(1) = (b, 0), b > 0, γ2(t) > 0,∀t ∈ (0, 1)},

∫ 1

0

√
γ

′2
1 (t) + γ

′2
2 (t)dt = π

}
.

Show that A ≤ π/2 where A is the area enclosed by the curve γ and the line segment
from the origin to (b, 0). Can you characterize the optimal case? This “half” isoperimetric
problem is called the Dido’s problem.

3. Draw the unit metric balls centered at the origin with respect to the metrics d2, d∞ and
d1 on R2.

4. Show that d(x, y) = |ex − ey| defines a metric on R.

5. Define d on Z× Z by d(n,m) = 2−d, where d is the largest power of 2 dividing n−m 6= 0
and set d(n, n) = 0. Verify that d defines a metric on Z.

6. Let f be a C1-function defined on the plane and consider the surface Σ = {(x, y, f(x, y) :
(x, y) ∈ R2}. For every two points p and q on Σ, a C1-piecewise, continuous curve con-
necting p and q is a continuous function γ : [0, 1] 7→ Σ such that its three components
γ1, γ2 and γ3 are continuous and C1-piecewise. Use these curves to define a notion of the
distance between p and q on Σ and show that it really defines a metric on Σ.

7. For a metric space (X, d), define m(x, y) = min{d(x, y), 1}. Show that m is again a metric.
Moreover, a sequence converges in d if and only is it converges in m.

8. Show that whenever d is a metric defines on X, then

ρ(x, y) ≡ d(x, y)

1 + d(x, y)

is also a metric on X. A sequence converges in d if and only if it converges in ρ.

9. Give an example of two inequivalent metrics which have the same concept of convergence.
Hint: Work on R and consider the previous examples.

10. Show that d2 is stronger than d1 on C[a, b] but they are not equivalent. Hint: Construct
a sequence {fn} in C[0, 1] satisfying ‖fn‖1 → 0 but ‖fn‖2 →∞ as n→∞.

11. Show that a function f from (X, d) to (Y, ρ) which is continuous at x0 if and only if for each
ε > 0, there exists some δ such that ρ(f(x), f(x0)) < ε whenever x satisfies d(x, x0) < δ.

12. Consider the functional Φ defined on C[a, b]

Φ(f) =

∫ b

a

√
1 + f2(x)dx.

Show that it is continuous in C[a, b] under both the d1- and d∞- distances. A real-valued
function defined on a space of functions is traditionally called a functional.
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13. Consider the functional Ψ defined on C[−1, 1] given by Ψ(f) = f(0). Show that it is
continuous in the d∞- but not in the d1-metric. Suggestion: Produce a sequence {fn} with
‖fn‖1 → 0 but fn(0) = 1, ∀n.

14. Let A be a non-empty set in (X, d) and define

d(x,A) ≡ inf{d(x, y) : y ∈ A}.

Show that
|d(x,A)− d(y,A)| ≤ d(x, y), x, y ∈ X,

that is, x 7→ d(x,A) is “Lipschitz continuous” with Lipschitz constant 1 in X.

15. Let A and B be two sets in (X, d) satisfying d(A,B) > 0 where

d(A,B) ≡ inf {d(x, y) : (x, y) ∈ A×B} .

Show that there exists a continuous function f from X to [0, 1] such that f ≡ 0 in A and
f ≡ 1 in B. This problem shows that there are many continuous functions in a metric
space.


